مەیدان (ماتماتیک)
لە ماتماتیکدا، مەیدان یان بوار[١] (بە ئینگلیزی: Field) کۆمەڵەیەکە، چوار کردەی کۆکردنەوە، لێدەرکردن، لێکدان و دابەشکردن، لەسەری پێناسە کراون. ئەم چوار کردەیە لە مەیدانەکاندا ڕەفتارێکی ھاوشێوەی چوار کردەی سەرەکییان ھەیە لە ژمارە ڕاستەقینەکان و ژمارە ڕێژەیەییەکاندا. مەیدان پێکھاتەیەکی جەبرییە، بە فرەوانی لە جەبر، تیۆریی ژمارەکان و زۆربەی لقەکانی تری ماتماتیک بەکار دەھێنرێت.
نموونەیەک لە ناسراوترین مەیدانەکان، مەیدانی ژمارە ڕێژەیییەکان، مەیدانی ژمارە ڕاستەقینەکان و مەیدانی ژمارە ئاوێتەکانن. زۆرێک لە مەیدانەکانی تر لە ماتماتیکدا، وەکوو مەیدانی فانکشنە جەبرییەکان، مەیدانی ژمارە جەبرییەکان و مەیدانی p-adicـەکان بە گشتی بە تایبەت لە بواری تیۆریی ژمارەکان و ئەندازەی جەبریدا بەکار دەھێنرێن.
مەیدانەکان بناغەی ھەندێک لە بوارەکانی ماتماتیک دادەڕێژن وەک شیکاریی ماتماتیکی کە بەندە لەسەر مەیدانەکان.
پێناسە
[دەستکاری]بە شێوی نافەرمی، دەکرێت مەیدان وەکوو کۆمەڵەیەک چاو لێ بکەین، کە دوو کردە لەسەری پێناسە کراون، یەکیان کۆکردنەوەیە و بە زمانی ماتماتیک بەم شێوە a + b دەنووسرێت، ئەوەی تریان لێکدانە و بە a ⋅ b ھێما دەکرێت. ئەم دوو کردەیە، ڕەفتارێکی ھاوشێوەیان ھەیە، بۆ نموونە دژە کۆکردنەوەی ھەموو ئەندامانی وەکوو a بوونی ھەیە و دەکاتە −a، ھەروەھا دژە لێکدانی[٢] ھەموو ئەندامە ناسیفرەکان وەکوو b بوونی ھەیە و دەبێتە b−1.
پێناسەی کلاسیک
[دەستکاری]مەیدانی F بە فەرمی بەم شێوەیە پێناسە دەکرێت، کۆمەڵەیەکە دوو کردەی کۆکردنەوە و لێکدان لەسەری پێناسە کراون. [٣] کردەیەکی دوانی لەسەر F بە زمانی ماتماتیک بە نەخشەیەک وەکوو F × F → F دەردەبڕن. ئەنجامی کۆکردنەوەی a و b بە شێوەی a + b دەنووسرێت. بە ھەمان شێوە، ئەنجامی لێکدانی a و b بە ab یان a ⋅ b ھێما دەکرێت. ئەم دوو کردەیە لە داھاتوودا بۆ پاسادانی تایبەتمەندییەکانی مەیدان، پێویستن، بەم تایبەتمەندییانە دەڵێن بەڵگەنەویستەکانی مەیدان، لێرەدا a ،b و c سێ ئەندامی دڵخوازن لە مەیدانی Fدا.
- یەکتربەستنی کۆکردنەوە و لێکدان:
- ئاڵوگۆڕی کۆکردنەوە و لێکدان:
- ئەندامی بێ لایەنی کۆکردنەوە و لێکدان: دوو ئەندامی جیاوازی 0 و 1 لە Fدا ھەیە، بە شێوەیەک a + 0 = a و a · 1 = a
- دژە کۆکردنەوە: بۆ ھەر a لە Fدا ئەندامێک ھەیە لە Fدا، بە −a ھێما دەرکرێت و پێی دەوترێت دژە کۆکردنەوەی a، لەمەوە a + (−a) = 0.
- بەشینەوەی لێکدان بەسەر کۆکردنەوەدا
ئەم بەڵگەنەویستانە بەم شێوە پوخت دەکرێنەوە. مەیدانێک دوو کرداری لەسەر پێناسە کراوە، پێیان دەوترێت، کۆکردنەوە و لێکدان. مەیدان بەپێی کۆکردنەوە گرووپێکی ئالوگۆڕە و 0 ئەندامی بێ لایەنی ئەم گرووپەیە؛ ئەندامە ناسیفرەکانیش بەپێی لێکدان، گرووپێکی ئالوگۆڕن کە ئەندامە بێ لایەنەکەیان بریتییە لە 1 ؛ لێکدان بەسەر کۆکردنەوەدا خاسیەتی بەشینەوەی ھەیە.
نموونە
[دەستکاری]ژمارە ڕێژەیییەکان
[دەستکاری]ژمارە ڕێژەیییەکان بەو ژمارانە دەوترێت کە لەسەر شێوەی کەرتی a/b دەنووسرێن. لێرەدا a و b ژمارەی تەواون و b ≠ 0. دژە کۆکردنەوە بریتییە لە −a/b و دژە لێکدان دەکاتە b/a بەو مەرجەی (a ≠ 0).
بۆ نموونە خاسیەتی بەشینەوە بەشێوەی خوارەوە دەسەلمێنرێت:
پەراوێزەکان
[دەستکاری]- ^ فەرھەنگی بیرکاری، نەوزاد عومەر محێدین
- ^ فەرھەنگی بیرکاری، نەوزاد عومەر محێدین
- ^ Beachy & Blair (2006, Definition 4.1.1, p. 181)
- ^ Beachy & Blair (2006, p. 120, Ch. 3)
سەرچاوەکان
[دەستکاری]- بەشداربووانی ویکیپیدیا، «Field (mathematics)»، ویکیپیدیای ئینگلیزی. سەردان لە ١١ی حوزەیرانی ٢٠٢٠.