بۆ ناوەڕۆک بازبدە
شریتەلا بگۆڕە
گەڕان
ھەژمار دروست بکە
بچۆ ژوورەوە
ئامڕازە تاکەکەسییەکان
ھەژمار دروست بکە
بچۆ ژوورەوە
ئەو پەڕانەی بۆ ئەو دەستکاریکەرانەن کە لەدەرەوەن
زیاتر فێر بە
بەشدارییەکان
لێدوان
ڕێدۆزی
دەستپێک
ڕووداوە ھەنووکەیییەکان
وتارێک بە ھەڵکەوت
بەخشین بە ویکیپیدیا
ھەڵسوکەوت
یارمەتی
دەربارەی ویکیپیدیا
دەروازەی کۆمەڵگە
دوایین گۆڕانکارییەکان
پەڕەی پەیوەندی
ئامرازەکان
بەستەرەکان بە ئێرەوە
گۆڕانکارییە پەیوەندیدارەکان
پەڕگەیەک بار بکە
پەڕە تایبەتەکان
بەستەری ھەمیشەیی
زانیاریی پەڕە
ئەم پەڕەیە بکە بە ژێدەر
بەندی ویکیدراوە
چاپکردن/ھەناردەکردن
دروستکردنی کتێبێک
داگرتن بە PDF
وەشانی ئامادەی چاپ
زمانەکان
لەسەر ویکیپیدیا بەستەرەکانی زمان لەسەرەوەی پەڕەکەدان بەرامبەر ناونیشانی وتارەکە.
بڕۆ بۆ سەرەوە
.
پێرستی تەواوکاری نەخشە ڕێژەییەکان
{٣٤ زمان}
العربية
Български
Bosanski
Català
Čeština
Чӑвашла
English
Esperanto
Español
Euskara
فارسی
Français
Galego
हिन्दी
Hrvatski
Հայերեն
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenščina
Српски / srpski
தமிழ்
Türkçe
Українська
Tiếng Việt
中文
دەستکاریی گرێدانەکان
وتار
وتووێژ
کوردی
خوێندنەوە
دەستکاری
مێژوو
زیاتر
خوێندنەوە
دەستکاری
مێژوو
لە ئینسایکڵۆپیدیای ئازادی ویکیپیدیاوە
تەواوکاری نەخشە ڕێژەییەکان لە
بیرکاریدا
:
∫
(
a
x
+
b
)
n
d
x
{\displaystyle \int (ax+b)^{n}dx}
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
(for
n
≠
−
1
)
{\displaystyle ={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫
c
a
x
+
b
d
x
{\displaystyle \int {\frac {c}{ax+b}}dx}
=
c
a
ln
|
a
x
+
b
|
{\displaystyle ={\frac {c}{a}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
{\displaystyle \int x(ax+b)^{n}dx}
=
a
(
n
+
1
)
x
−
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
(for
n
∉
{
−
1
,
−
2
}
)
{\displaystyle ={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\mbox{(for }}n\not \in \{-1,-2\}{\mbox{)}}}
∫
x
a
x
+
b
d
x
{\displaystyle \int {\frac {x}{ax+b}}dx}
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
{\displaystyle ={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
2
d
x
{\displaystyle \int {\frac {x}{(ax+b)^{2}}}dx}
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
|
a
x
+
b
|
{\displaystyle ={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
{\displaystyle \int {\frac {x}{(ax+b)^{n}}}dx}
=
a
(
1
−
n
)
x
−
b
a
2
(
n
−
1
)
(
n
−
2
)
(
a
x
+
b
)
n
−
1
(for
n
∉
{
1
,
2
}
)
{\displaystyle ={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\mbox{(for }}n\not \in \{1,2\}{\mbox{)}}}
∫
x
2
a
x
+
b
d
x
{\displaystyle \int {\frac {x^{2}}{ax+b}}dx}
=
1
a
3
(
(
a
x
+
b
)
2
2
−
2
b
(
a
x
+
b
)
+
b
2
ln
|
a
x
+
b
|
)
{\displaystyle ={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)}
∫
x
2
(
a
x
+
b
)
2
d
x
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}dx}
=
1
a
3
(
a
x
+
b
−
2
b
ln
|
a
x
+
b
|
−
b
2
a
x
+
b
)
{\displaystyle ={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)}
∫
x
2
(
a
x
+
b
)
3
d
x
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}dx}
=
1
a
3
(
ln
|
a
x
+
b
|
+
2
b
a
x
+
b
−
b
2
2
(
a
x
+
b
)
2
)
{\displaystyle ={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)}
∫
x
2
(
a
x
+
b
)
n
d
x
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}dx}
=
1
a
3
(
−
(
a
x
+
b
)
3
−
n
(
n
−
3
)
+
2
b
(
a
+
b
)
2
−
n
(
n
−
2
)
−
b
2
(
a
x
+
b
)
1
−
n
(
n
−
1
)
)
(for
n
∉
{
1
,
2
,
3
}
)
{\displaystyle ={\frac {1}{a^{3}}}\left(-{\frac {(ax+b)^{3-n}}{(n-3)}}+{\frac {2b(a+b)^{2-n}}{(n-2)}}-{\frac {b^{2}(ax+b)^{1-n}}{(n-1)}}\right)\qquad {\mbox{(for }}n\not \in \{1,2,3\}{\mbox{)}}}
∫
1
x
(
a
x
+
b
)
d
x
{\displaystyle \int {\frac {1}{x(ax+b)}}dx}
=
−
1
b
ln
|
a
x
+
b
x
|
{\displaystyle =-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
1
x
2
(
a
x
+
b
)
d
x
{\displaystyle \int {\frac {1}{x^{2}(ax+b)}}dx}
=
−
1
b
x
+
a
b
2
ln
|
a
x
+
b
x
|
{\displaystyle =-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
1
x
2
(
a
x
+
b
)
2
d
x
{\displaystyle \int {\frac {1}{x^{2}(ax+b)^{2}}}dx}
=
−
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
−
2
b
3
ln
|
a
x
+
b
x
|
)
{\displaystyle =-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)}
∫
1
x
2
+
a
2
d
x
{\displaystyle \int {\frac {1}{x^{2}+a^{2}}}dx}
=
1
a
arctan
x
a
{\displaystyle ={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!}
∫
1
x
2
−
a
2
d
x
=
{\displaystyle \int {\frac {1}{x^{2}-a^{2}}}dx=}
−
1
a
a
r
c
t
a
n
h
x
a
=
1
2
a
ln
a
−
x
a
+
x
(for
|
x
|
<
|
a
|
)
{\displaystyle -{\frac {1}{a}}\,\mathrm {arctanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\mbox{(for }}|x|<|a|{\mbox{)}}\,\!}
−
1
a
a
r
c
c
o
t
h
x
a
=
1
2
a
ln
x
−
a
x
+
a
(for
|
x
|
>
|
a
|
)
{\displaystyle -{\frac {1}{a}}\,\mathrm {arccoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\mbox{(for }}|x|>|a|{\mbox{)}}\,\!}
for
a
≠
0
:
{\displaystyle a\neq 0:}
∫
1
a
x
2
+
b
x
+
c
d
x
=
{\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx=}
2
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
{\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}}
−
2
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
=
1
b
2
−
4
a
c
ln
|
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
|
(for
4
a
c
−
b
2
<
0
)
{\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {arctanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}}
−
2
2
a
x
+
b
(for
4
a
c
−
b
2
=
0
)
{\displaystyle -{\frac {2}{2ax+b}}\qquad {\mbox{(for }}4ac-b^{2}=0{\mbox{)}}}
∫
x
a
x
2
+
b
x
+
c
d
x
{\displaystyle \int {\frac {x}{ax^{2}+bx+c}}dx}
=
1
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
b
2
a
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle ={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx=}
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
{\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}}
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
(for
4
a
c
−
b
2
<
0
)
{\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {arctanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}}
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
(
2
a
x
+
b
)
(for
4
a
c
−
b
2
=
0
)
{\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}\,\,\,\,\,\,\,\,\,\,\qquad {\mbox{(for }}4ac-b^{2}=0{\mbox{)}}}
∫
1
(
a
x
2
+
b
x
+
c
)
n
d
x
=
2
a
x
+
b
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
+
(
2
n
−
3
)
2
a
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
{\displaystyle \int {\frac {1}{(ax^{2}+bx+c)^{n}}}dx={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!}
∫
x
(
a
x
2
+
b
x
+
c
)
n
d
x
=
b
x
+
2
c
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
−
b
(
2
n
−
3
)
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
{\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}dx={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!}
∫
1
x
(
a
x
2
+
b
x
+
c
)
d
x
=
1
2
c
ln
|
x
2
a
x
2
+
b
x
+
c
|
−
b
2
c
∫
1
a
x
2
+
b
x
+
c
d
x
{\displaystyle \int {\frac {1}{x(ax^{2}+bx+c)}}dx={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {1}{ax^{2}+bx+c}}dx}
∫
d
x
x
2
n
+
1
=
∑
k
=
1
2
n
−
1
{
1
2
n
−
1
[
sin
(
(
2
k
−
1
)
π
2
n
)
arctan
[
(
x
−
cos
(
(
2
k
−
1
)
π
2
n
)
)
csc
(
(
2
k
−
1
)
π
2
n
)
]
]
−
1
2
n
[
cos
(
(
2
k
−
1
)
π
2
n
)
ln
|
x
2
−
2
x
cos
(
(
2
k
−
1
)
π
2
n
)
+
1
|
]
}
{\displaystyle \int {\frac {dx}{x^{2^{n}}+1}}=\sum _{k=1}^{2^{n-1}}\left\{{\frac {1}{2^{n-1}}}\left[\sin({\frac {(2k-1)\pi }{2^{n}}})\arctan[\left(x-\cos({\frac {(2k-1)\pi }{2^{n}}})\right)\csc({\frac {(2k-1)\pi }{2^{n}}})]\right]-{\frac {1}{2^{n}}}\left[\cos({\frac {(2k-1)\pi }{2^{n}}})\ln \left|x^{2}-2x\cos({\frac {(2k-1)\pi }{2^{n}}})+1\right|\right]\right\}}