بۆ ناوەڕۆک بازبدە
پێڕستی سەرەکی
پێڕستی سەرەکی
بخە لاتەنیشت
بشارەوە
ڕێدۆزی
دەستپێک
ڕووداوە ھەنووکەیییەکان
وتارێک بە ھەڵکەوت
بەخشین بە ویکیپیدیا
ھەڵسوکەوت
یارمەتی
دەربارەی ویکیپیدیا
دەروازەی کۆمەڵگە
دوایین گۆڕانکارییەکان
پەڕەی پەیوەندی
گەڕان
بگەڕێ
ڕواڵەت
ھەژمار دروست بکە
بچۆ ژوورەوە
ئامڕازە تاکەکەسییەکان
ھەژمار دروست بکە
بچۆ ژوورەوە
ئەو پەڕانەی بۆ ئەو دەستکاریکەرانەن کە لەدەرەوەن
زیاتر فێر بە
بەشدارییەکان
لێدوان
پێرستی تەواوکاری نەخشە ڕێژەییەکان
٣٤ زمان
العربية
Български
Bosanski
Català
Čeština
Чӑвашла
English
Esperanto
Español
Euskara
فارسی
Français
Galego
हिन्दी
Hrvatski
Հայերեն
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenščina
Српски / srpski
தமிழ்
Türkçe
Українська
Tiếng Việt
中文
دەستکاریی گرێدانەکان
وتار
وتووێژ
کوردی
خوێندنەوە
دەستکاری
مێژوو
ئامرازەکان
ئامرازەکان
بخە لاتەنیشت
بشارەوە
کردەوەکان
خوێندنەوە
دەستکاری
مێژوو
گشتی
بەستەرەکان بە ئێرەوە
گۆڕانکارییە پەیوەندیدارەکان
پەڕگەیەک بار بکە
پەڕە تایبەتەکان
بەستەری ھەمیشەیی
زانیاریی پەڕە
ئەم پەڕەیە بکە بە ژێدەر
بەستەری کورتکراوە بەدەست بێنە
کۆدی کیوئاڕ داگرە
بەندی ویکیدراوە
چاپکردن/ھەناردەکردن
دروستکردنی کتێبێک
داگرتن بە PDF
وەشانی ئامادەی چاپ
لە پڕۆژەکانی تر
ڕواڵەت
بخە لاتەنیشت
بشارەوە
لە ئینسایکڵۆپیدیای ئازادی ویکیپیدیاوە
تەواوکاری نەخشە ڕێژەییەکان لە
بیرکاریدا
:
∫
(
a
x
+
b
)
n
d
x
{\displaystyle \int (ax+b)^{n}dx}
=
(
a
x
+
b
)
n
+
1
a
(
n
+
1
)
(for
n
≠
−
1
)
{\displaystyle ={\frac {(ax+b)^{n+1}}{a(n+1)}}\qquad {\mbox{(for }}n\neq -1{\mbox{)}}\,\!}
∫
c
a
x
+
b
d
x
{\displaystyle \int {\frac {c}{ax+b}}dx}
=
c
a
ln
|
a
x
+
b
|
{\displaystyle ={\frac {c}{a}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
{\displaystyle \int x(ax+b)^{n}dx}
=
a
(
n
+
1
)
x
−
b
a
2
(
n
+
1
)
(
n
+
2
)
(
a
x
+
b
)
n
+
1
(for
n
∉
{
−
1
,
−
2
}
)
{\displaystyle ={\frac {a(n+1)x-b}{a^{2}(n+1)(n+2)}}(ax+b)^{n+1}\qquad {\mbox{(for }}n\not \in \{-1,-2\}{\mbox{)}}}
∫
x
a
x
+
b
d
x
{\displaystyle \int {\frac {x}{ax+b}}dx}
=
x
a
−
b
a
2
ln
|
a
x
+
b
|
{\displaystyle ={\frac {x}{a}}-{\frac {b}{a^{2}}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
2
d
x
{\displaystyle \int {\frac {x}{(ax+b)^{2}}}dx}
=
b
a
2
(
a
x
+
b
)
+
1
a
2
ln
|
a
x
+
b
|
{\displaystyle ={\frac {b}{a^{2}(ax+b)}}+{\frac {1}{a^{2}}}\ln \left|ax+b\right|}
∫
x
(
a
x
+
b
)
n
d
x
{\displaystyle \int {\frac {x}{(ax+b)^{n}}}dx}
=
a
(
1
−
n
)
x
−
b
a
2
(
n
−
1
)
(
n
−
2
)
(
a
x
+
b
)
n
−
1
(for
n
∉
{
1
,
2
}
)
{\displaystyle ={\frac {a(1-n)x-b}{a^{2}(n-1)(n-2)(ax+b)^{n-1}}}\qquad {\mbox{(for }}n\not \in \{1,2\}{\mbox{)}}}
∫
x
2
a
x
+
b
d
x
{\displaystyle \int {\frac {x^{2}}{ax+b}}dx}
=
1
a
3
(
(
a
x
+
b
)
2
2
−
2
b
(
a
x
+
b
)
+
b
2
ln
|
a
x
+
b
|
)
{\displaystyle ={\frac {1}{a^{3}}}\left({\frac {(ax+b)^{2}}{2}}-2b(ax+b)+b^{2}\ln \left|ax+b\right|\right)}
∫
x
2
(
a
x
+
b
)
2
d
x
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{2}}}dx}
=
1
a
3
(
a
x
+
b
−
2
b
ln
|
a
x
+
b
|
−
b
2
a
x
+
b
)
{\displaystyle ={\frac {1}{a^{3}}}\left(ax+b-2b\ln \left|ax+b\right|-{\frac {b^{2}}{ax+b}}\right)}
∫
x
2
(
a
x
+
b
)
3
d
x
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{3}}}dx}
=
1
a
3
(
ln
|
a
x
+
b
|
+
2
b
a
x
+
b
−
b
2
2
(
a
x
+
b
)
2
)
{\displaystyle ={\frac {1}{a^{3}}}\left(\ln \left|ax+b\right|+{\frac {2b}{ax+b}}-{\frac {b^{2}}{2(ax+b)^{2}}}\right)}
∫
x
2
(
a
x
+
b
)
n
d
x
{\displaystyle \int {\frac {x^{2}}{(ax+b)^{n}}}dx}
=
1
a
3
(
−
(
a
x
+
b
)
3
−
n
(
n
−
3
)
+
2
b
(
a
+
b
)
2
−
n
(
n
−
2
)
−
b
2
(
a
x
+
b
)
1
−
n
(
n
−
1
)
)
(for
n
∉
{
1
,
2
,
3
}
)
{\displaystyle ={\frac {1}{a^{3}}}\left(-{\frac {(ax+b)^{3-n}}{(n-3)}}+{\frac {2b(a+b)^{2-n}}{(n-2)}}-{\frac {b^{2}(ax+b)^{1-n}}{(n-1)}}\right)\qquad {\mbox{(for }}n\not \in \{1,2,3\}{\mbox{)}}}
∫
1
x
(
a
x
+
b
)
d
x
{\displaystyle \int {\frac {1}{x(ax+b)}}dx}
=
−
1
b
ln
|
a
x
+
b
x
|
{\displaystyle =-{\frac {1}{b}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
1
x
2
(
a
x
+
b
)
d
x
{\displaystyle \int {\frac {1}{x^{2}(ax+b)}}dx}
=
−
1
b
x
+
a
b
2
ln
|
a
x
+
b
x
|
{\displaystyle =-{\frac {1}{bx}}+{\frac {a}{b^{2}}}\ln \left|{\frac {ax+b}{x}}\right|}
∫
1
x
2
(
a
x
+
b
)
2
d
x
{\displaystyle \int {\frac {1}{x^{2}(ax+b)^{2}}}dx}
=
−
a
(
1
b
2
(
a
x
+
b
)
+
1
a
b
2
x
−
2
b
3
ln
|
a
x
+
b
x
|
)
{\displaystyle =-a\left({\frac {1}{b^{2}(ax+b)}}+{\frac {1}{ab^{2}x}}-{\frac {2}{b^{3}}}\ln \left|{\frac {ax+b}{x}}\right|\right)}
∫
1
x
2
+
a
2
d
x
{\displaystyle \int {\frac {1}{x^{2}+a^{2}}}dx}
=
1
a
arctan
x
a
{\displaystyle ={\frac {1}{a}}\arctan {\frac {x}{a}}\,\!}
∫
1
x
2
−
a
2
d
x
=
{\displaystyle \int {\frac {1}{x^{2}-a^{2}}}dx=}
−
1
a
a
r
c
t
a
n
h
x
a
=
1
2
a
ln
a
−
x
a
+
x
(for
|
x
|
<
|
a
|
)
{\displaystyle -{\frac {1}{a}}\,\mathrm {arctanh} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {a-x}{a+x}}\qquad {\mbox{(for }}|x|<|a|{\mbox{)}}\,\!}
−
1
a
a
r
c
c
o
t
h
x
a
=
1
2
a
ln
x
−
a
x
+
a
(for
|
x
|
>
|
a
|
)
{\displaystyle -{\frac {1}{a}}\,\mathrm {arccoth} {\frac {x}{a}}={\frac {1}{2a}}\ln {\frac {x-a}{x+a}}\qquad {\mbox{(for }}|x|>|a|{\mbox{)}}\,\!}
for
a
≠
0
:
{\displaystyle a\neq 0:}
∫
1
a
x
2
+
b
x
+
c
d
x
=
{\displaystyle \int {\frac {1}{ax^{2}+bx+c}}dx=}
2
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
{\displaystyle {\frac {2}{\sqrt {4ac-b^{2}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}}
−
2
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
=
1
b
2
−
4
a
c
ln
|
2
a
x
+
b
−
b
2
−
4
a
c
2
a
x
+
b
+
b
2
−
4
a
c
|
(for
4
a
c
−
b
2
<
0
)
{\displaystyle -{\frac {2}{\sqrt {b^{2}-4ac}}}\,\mathrm {arctanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}={\frac {1}{\sqrt {b^{2}-4ac}}}\ln \left|{\frac {2ax+b-{\sqrt {b^{2}-4ac}}}{2ax+b+{\sqrt {b^{2}-4ac}}}}\right|\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}}
−
2
2
a
x
+
b
(for
4
a
c
−
b
2
=
0
)
{\displaystyle -{\frac {2}{2ax+b}}\qquad {\mbox{(for }}4ac-b^{2}=0{\mbox{)}}}
∫
x
a
x
2
+
b
x
+
c
d
x
{\displaystyle \int {\frac {x}{ax^{2}+bx+c}}dx}
=
1
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
b
2
a
∫
d
x
a
x
2
+
b
x
+
c
{\displaystyle ={\frac {1}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {b}{2a}}\int {\frac {dx}{ax^{2}+bx+c}}}
∫
m
x
+
n
a
x
2
+
b
x
+
c
d
x
=
{\displaystyle \int {\frac {mx+n}{ax^{2}+bx+c}}dx=}
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
+
2
a
n
−
b
m
a
4
a
c
−
b
2
arctan
2
a
x
+
b
4
a
c
−
b
2
(for
4
a
c
−
b
2
>
0
)
{\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|+{\frac {2an-bm}{a{\sqrt {4ac-b^{2}}}}}\arctan {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}\qquad {\mbox{(for }}4ac-b^{2}>0{\mbox{)}}}
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
b
2
−
4
a
c
a
r
c
t
a
n
h
2
a
x
+
b
b
2
−
4
a
c
(for
4
a
c
−
b
2
<
0
)
{\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a{\sqrt {b^{2}-4ac}}}}\,\mathrm {arctanh} {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}\qquad {\mbox{(for }}4ac-b^{2}<0{\mbox{)}}}
m
2
a
ln
|
a
x
2
+
b
x
+
c
|
−
2
a
n
−
b
m
a
(
2
a
x
+
b
)
(for
4
a
c
−
b
2
=
0
)
{\displaystyle {\frac {m}{2a}}\ln \left|ax^{2}+bx+c\right|-{\frac {2an-bm}{a(2ax+b)}}\,\,\,\,\,\,\,\,\,\,\qquad {\mbox{(for }}4ac-b^{2}=0{\mbox{)}}}
∫
1
(
a
x
2
+
b
x
+
c
)
n
d
x
=
2
a
x
+
b
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
+
(
2
n
−
3
)
2
a
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
{\displaystyle \int {\frac {1}{(ax^{2}+bx+c)^{n}}}dx={\frac {2ax+b}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}+{\frac {(2n-3)2a}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!}
∫
x
(
a
x
2
+
b
x
+
c
)
n
d
x
=
b
x
+
2
c
(
n
−
1
)
(
4
a
c
−
b
2
)
(
a
x
2
+
b
x
+
c
)
n
−
1
−
b
(
2
n
−
3
)
(
n
−
1
)
(
4
a
c
−
b
2
)
∫
1
(
a
x
2
+
b
x
+
c
)
n
−
1
d
x
{\displaystyle \int {\frac {x}{(ax^{2}+bx+c)^{n}}}dx={\frac {bx+2c}{(n-1)(4ac-b^{2})(ax^{2}+bx+c)^{n-1}}}-{\frac {b(2n-3)}{(n-1)(4ac-b^{2})}}\int {\frac {1}{(ax^{2}+bx+c)^{n-1}}}dx\,\!}
∫
1
x
(
a
x
2
+
b
x
+
c
)
d
x
=
1
2
c
ln
|
x
2
a
x
2
+
b
x
+
c
|
−
b
2
c
∫
1
a
x
2
+
b
x
+
c
d
x
{\displaystyle \int {\frac {1}{x(ax^{2}+bx+c)}}dx={\frac {1}{2c}}\ln \left|{\frac {x^{2}}{ax^{2}+bx+c}}\right|-{\frac {b}{2c}}\int {\frac {1}{ax^{2}+bx+c}}dx}
∫
d
x
x
2
n
+
1
=
∑
k
=
1
2
n
−
1
{
1
2
n
−
1
[
sin
(
(
2
k
−
1
)
π
2
n
)
arctan
[
(
x
−
cos
(
(
2
k
−
1
)
π
2
n
)
)
csc
(
(
2
k
−
1
)
π
2
n
)
]
]
−
1
2
n
[
cos
(
(
2
k
−
1
)
π
2
n
)
ln
|
x
2
−
2
x
cos
(
(
2
k
−
1
)
π
2
n
)
+
1
|
]
}
{\displaystyle \int {\frac {dx}{x^{2^{n}}+1}}=\sum _{k=1}^{2^{n-1}}\left\{{\frac {1}{2^{n-1}}}\left[\sin({\frac {(2k-1)\pi }{2^{n}}})\arctan[\left(x-\cos({\frac {(2k-1)\pi }{2^{n}}})\right)\csc({\frac {(2k-1)\pi }{2^{n}}})]\right]-{\frac {1}{2^{n}}}\left[\cos({\frac {(2k-1)\pi }{2^{n}}})\ln \left|x^{2}-2x\cos({\frac {(2k-1)\pi }{2^{n}}})+1\right|\right]\right\}}
دەروازەی ماتماتیک
دەروازەی شیکاریی ماتماتیکی
پۆلە شاردراوەکان:
دەروازەی ماتماتیک/وتارە پەیوەندیدارەکان
دەروازەی شیکاریی ماتماتیکی/وتارە پەیوەندیدارەکان
ھەموو ئەو وتارانەی تووڵی دەروازەیان بەکارھێناوە